VELAMMAL COLLEGE OF ENGINEERING & TECHNOLOGY, MADURAI – 625 009.

(Autonomous)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

JOURNALS FOR CITATION 2022 & 2023

Sl. No.	Name of the faculty	Paper title	Journal Name	Indexed	Impact Factor	Recent Trends	Scope for future research
1.	Dr.A.Shunmugalatha	The palm tree optimization: Algorithm and applications	Journal of Intelligent and Fuzzy Systems, 2023, 45(1), pp. 1357–1385	Scopus indexed	1.737	The proposed algorithm with better search ability over different classes of benchmark functions and real-world applications	To develop Deep-Learning- Based Automated Palm Tree Counting and Geolocation in Large Farms
2.	Dr.A.Shunmugalatha	Design and Implementation of a New Fast and Efficient MPPT Controller under Different Solar Irradiance Conditions	International Journal of Photoenergy, 2022	Scopus indexed	2.535	The proposed system has excellent dynamic performance, has no steady-state oscillation, and can track the MPP effectively	To enhance and improve the effectiveness of MPPT controller is validated by various types of hardware implementation.
3.	Dr.R.Narmatha Banu	Design and Analysis of LSANN-IPOMPPT with Zeta Converter in PV Systems for Fluctuating Atmospheric Circumstances	Arabian Journal for Science and Engineering, 2023, 48(5), pp. 6053– 6065	Scopus indexed	2.807	Application of LSANN in renewable energy systems	To produce more efficient output power range from PV System
4.	Dr.R.Narmatha Banu	Feature-Reduced Stability Analysis of Islanded Photovoltaic Microgrid Inverters	International Journal of Photoenergy, 2022	Scopus indexed	2.535	exploring soft computing methods for feature-reduced stability analysis of parallel inverters	 Validating dimensionality reduction in the stability analysis of

							parallel inverters. Introducing the dynamics of photovoltaic characteristics in the microgrids
5.	Dr.N.Karpagam	Cost analysis of energy efficient solar water pumping system	Indian Journal of Engineering, 2022, 19(51), pp. 133– 143	Scopus indexed	0.24	MPPT based Solar based water pumping is the exploring technology	AI based technologies can be used for maximum power point tracking in solar panel
6.	Dr.S.Dhanalakshmi	Design and Control of Modified Super Lift Luo Converter for Electric Vehicle Applications	Electric Power Components and Systems, Apr 2023, 51(14), pp. 1474– 1485	Scopus indexed		New converters can be compared and better one can be suggested	Inclusion of Soft computing techniques can be done.
7.	Dr.S.Senthilrani	A mathematical model to forecast solar PV performance	Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A, 2023, 46(5), pp. 431–440	Scopus indexed		of Solar PV system	Machine learning based performance prediction
8.	Dr.S.Senthilrani	An Overview of Various Computer Vision-based Grading System for Various Agricultural Products	Journal of Horticultural Science and Biotechnology, 2022, 97(2), pp. 137–159	Scopus	1.91	AI enabled food quality prediction	Non destructive type food grading system

1976 34								
	9.	Dr.B.Kiruthiga	Implementation and	International	Scopus		autonomous	To evaluate
			Classification of Breast	Conference on	indexed		prediction and	using
			Cancer	Computer			diagnosis of Breast	performance
			Histopathological	Communication and			Cancer	improvisation
			Image Processing	Informatics, ICCCI				and predictions
1			using Support Vector	2023				
:			Machine					
	10	Dr.S.Chellam -	Blockchain-enabled	Blockchain-Based	Scopus	-	EV charging with	EV charging
			electric vehicle	Systems for the	indexed		Block chain	with Block chain
			charging	Modern Energy			technology	can be applied
				Grid, 2022, pp.				into research
				189–201				work
				(Book chapter)				
	11.	Dr.S.Chellam	Congestion cost	Journal of	Scopus	1.737	Red fox algorithm	Cost calculation
91			estimation using	Intelligent and	indexed		provides less	in distribution
9			adaptive red fox	Fuzzy Systems,			computation time	line can be
334	Kind ala		algorithm in	2023, 45(5), pp.			as compared with	optimized by
			restructured electricity	8465–8477			other optimization	applying this
6.5			markets				methods	algorithm

HoD/EEE